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AbslracL 'ho-species dilfusion-limited annihilation in Iw than four dimensions is well 
known lo have a concentration decaying as i-d14, as opposed lo the rate equation 
result of t - l .  This result had not, however, been demonstrated numerically in three 
dimensions, due 10 ve'y strong transienl eKec1s. A variant of the model is proposed 
here, and is shown lo reach the exactly known asymptotic behaviour in numerically 
accessible times. This also allow one to investigate open questions in this system with 
some certainty that the results are indeed asymptotic. In particular. il is shown that 
the distance between two panicles of Ihe same species scales identically to the distance 
between panicles of different species. T h i s  is i n  contradistinction to recent (numerical 
and scaling) results in one and two dimensions. Some evidence is also presented that, 
contrary to previous suggestions, the domains formed in three-dimensional two-species 
annihilation are indeed regular objecls with smooth interfaces. 

1. Introduction 

Diffusion-limited two-species annihilation has been studied in great detail in the last 
ten years. This is mainly due to the discovery [l] that for space dimension d less than 
four, this system can form a structure of A- and B-rich domains, due to the fact that 
diffusion is not strong enough to destroy the correlations induced by the reaction. A 
very simple scaling argument [l-21 was presented to show that, for the case of equal 
initial concentrations of A and B, the concentration c ( t )  of either species behaves as 

where D is the diffusion constant. This differs from the rate-equation prediction 

is different in the two cases. Secondly, the basic time scale is set by the diffusion 
constant and not by any reaction rate. Thirdly, the rate equations predict that there 
is no asymptotic dependence on the initial concentration c(O), contrary to equation 
(1.1). All these predictions have been amply verified numerically in one and two 
dimensions as well as on fractals (2-51 and finally p m e d  rigorously by Lebowitz and 
Bramson [6] for any d less than four. 

The numerical situation in three dimensions is far from clear, however. In fact, 
there cannot be said to exist any compelling evidence for a decay as t - 3 / 4 .  In view of 
the rigorous results of Lebowitz and Bramson, this might seem to be a rather technical 
issue. Nevertheless, it is of some importance for practical reasons. lb give but one 
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example, it was recently realized [7] that the distance d,, between two particles of 
different species could scale differently from the interparticle distance d,, between 
particles of the same species. More specifically, it was shown by scaling arguments 
that in one dimension 

whereas d,, varies as ( D1)1/4. In two dimensions, the argument is somewhat more 
involved. Nevertheless, together with numerical evidence, a very good case can be 
made for the claim that d,, grows as t1I3. In three dimensions, however, the 
question remains entirely open. This is due to the fact that the scaling arguments 
require additional hypotheses concerning the domain interfaces which are, at the  very 
least, questionable in three dimensions. Thus one requires some form of numerical 
simulation to determine the time dependence of d,, and dBB. But in order to be 
reliable, such a simulation should first be able to reproduce the exactly known results 
of the decay of concentrations, otherwise there must always be some doubt as to 
whether one is indeed in the asymptotic regime. This, however, is precisely what no 
simulation up to now has been able to do. 

In the next section, I shall present a slight variation on the standard lattice model 
for two-species annihilation. This model is iathcr more strongly reactive than the 
usual one, so that deviations kom the rate equations predictions are stronger and 
become noticeable more quickly. On the other hand, this model is subject to stronger 
finite-size effects than the usual one, so that especially large amounts of memory are 
required for these simulations. 1 shall show the results of a simulation on a cubic 
lattice with L equal to 200, which will be seen to be in excellent agreement with the 
theoretical predictions summarized above. In section 3, 1 shall show for the same 
simuiations <ne resuits for the interparticie distances d,, Botn of these 
will be Seen to grow in an identical way, and approximateyfsd?7', in contrast to 
the one- and two-dimensional cases. I also compute the number of nearest-neighbour 
AB pairs and show that their decay is consistent with a picture of compact domains 
with regular interfaces (i.e., the surface of these domains grows as the square of the 
radius). A scaling argument is given to argue that these findings are indeed consistent. 

2. The model 

The following is a very minor modification of the model originally described in [ 2 ] .  
I start with a lattice having an exactly equal number of A and B particles. The 

runs with initial lattice fillings down to 0.1 were also performed. At each time step, 
one particle is chosen at random and its neighbours are checked. If there are any 
neighbours capable of reacting with the particle, one of them is chosen at random 
and the two are annihilated. If not, then a lattice direction is chosen at random 
and the particle attempts to move in this direction. If the new site does not contain 
any particles, the particle is moved to that site, otherwise nothing whatever happens. 
This last is to ensure that no site is ever occupied by more than one particle, a 
feature which simplifies the programming. This procedure introduces hard-sphere 
correlations between the particles. These are expected to become negligible in the 
relevant regime of small concentrations. The model originally used had all the same 
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characteristics, except that the rules for moving the particles were chosen slightly 
differently: a particle was first chosen at random, then moved in a random direction, 
and only if it then coincided with a particle of the opposite species did it react. If it 
coincided with a particle of the same species, the move was not performed. Thus, the 
difference between the two models is most aptly summarized as follows: if one thinks 
of the particles as having a given radius and reacting upon contact, then it may be 
said that the usual model uses particle of radius zero, whereas my variation consists 
of using a radius of half a lattice spacing. 

The only significant difference to the original model is therefore that particles are 
more reactive. Thus the relative importance of the effects of diffusion are likely to 
be enhanced. This modification could be pursued further, for example, to include 
reactions to next-nearest neighbours. It  is doubtful that this would improve matters, 
as finite-size effects would then become dominant. In the present model, they are 
already quite strong. The exact reason for this is not quite clear to the author. 

0 1 2 3 4 
log f 

Figure 1. 
?he slope is 0.75 within error. 

Plot of log c ( t )  V ~ R U S  log 1.  ?he initial concentration is one (filled lattice). 

The results for the c ( 1 )  for a completely filled lattice are shown in figure 1 and 
figure 2. These correspond to ten runs on a lattice 200 on a side. The computations 
were performed on an Apollo loo00 and required typically of the order of ten hours 
of CPU time. (This performance could be considerably improved on any machine with 
sufficiently large memory. 1 was forced to resort to costly ‘trick’ for the lattice to 
fit into memory.) In figure 1, one sees a fairly large power-law regime (extending 
approximately from t = 30 to 1 = 1000). The data show little scatter on this double 
logarithmic plot and therefore the fit to a decay of t-3/4 is rather convincing. In 
figure 2, I have plotted P c ( 1 )  against log 1 for different values of a. This biased 
plot shows clearly the amplitude of the noise and indicates that the value of a equal 
to 0.75 yields a fairly horizontal line between 1 = 30 and t = 1000, whereas the 
values of a equal to 0.73 or 0.77 do not. It therefore seems that this model yields 
a 1 - 3 / 4  decay, as expected from the exact results of Bramson and Lebowitz. From 
these results, it is reasonable to conclude that the exponent for the decay of c ( t )  
is, to be conservative, equal to 0.75 i 0.02, since the exponents limiting this range 
already show clear signs of not representing the asymptotic behaviour. An analysis of 
successive slopes confirms these confidence limits. 



3208 F Leywaz 

0 3 8 1  I 

0.36 

;I 0 . 3  - 
v . 

0.32 

* .  I .  
- .  

0.28 
L I 

1 5  2 0  2.5 3.0 
log t 

Figure 2 Same data as in figure I, but leplottcd as t a c ( t )  as a function of log1 for 
the following values of U: points, ~1 = 0.75;  mosses, U = 0.73;  and stan, U = 0.77. 
I1  appears that the exponent 314 gives Ule closest fit to a honzonlal line. 

log t 

F I ~ W  3. Plot of t 3 / ' c ( t ) / m  against h g t  for C ( O )  equal io I (points), 0.2 
(crosses), 0.1 (stars) and 0.05 (open circles). None of these except the linl is lruly 
asymplolic. but the mnvergence lo a mmmm value indicates lhat Ihe k a1 leas1 
approximately valid. 

It does not appear likely that it would be possible to test that the time scale 

this model as reactive as possible in order to reach the asymptotic behaviour for 
the concentration. On the other hand, there is no reason to expect any difficulty in 
testing the dependence on c(O), which is another of the characteristics predicted by 
the scaling theory, but not borne out convincingly by numerical experiment. Figure 3 
shows a plot of t 3 l 4 c ( t )  for various initial concentrations c(O), scaled by C ( O ) - ' / ~ .  
These should all fall upon one flat line. As seen in figure 3, this is far from being the 
case. Thus one concludes that for initial concentrations of less than one (in particular 
for such small initial concentrations as 0.05) the asymptotic regime is not reached in 
numerically accessible time. At first sight, this might be attributed to the fact that 

i5 indeed set by the diK!!sion constant E ,  since it %S a!rc.ady !!ecessaly to make 
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particles with a low initial concentration take a fairly long time to encounter each 
other, namely of the order of c ( O ) - ’ / ~ .  This cannot explain the large discrepancies 
found at times between t = 100 and 1 = 1000, though, since in the worst case 
(c(0) = 0.1) the time necessaty for encounters is of the order of 10. Thus one 
is forced to the conclusion that strong deviations from asymptotic behaviour persist 
over the entire range of numerically accessible times when the initial concentration is 
low. However, it should be noted that the discrepancies between the various curves 
diminish as t increases, at least as long as finite-size effects do not arise. This can be 
explained if one supposes (naturally enough) that apart from the leading behaviour 
one has a mean-field type correction such as 

Rescaling by c ( O ) - ’ / ’  would emphasize the second term for small c(O), thus  ex- 
plaining the upward trend. Nevertheless, this fit must be viewed as rather qualitative 
confirmation that one is in the asymptotic regime rather than anything else. Sum- 
marizing, it can be said that this modified model can indeed reproduce the known 
theoretical predictions between t = 30 and t = 1000 for a lattice 200 on a side. 

3. Interparticle distances 

Let me first recall the arguments given earlier [7], to compute exponents for interpar- 
ticle distances. If one defines cAB to be the concentration of nearest-neighbour AB 
pairs and d,, as the average interparticle distance for AB pairs, a relation between 
the two is obtained as follows: in a time of the order of d i B ,  a significant portion of 
the nearest-neighbour AB pairs will have annihilated iI the random walk is compact, 
that is, for d < 2. Calling Ac the change in concentration occurring in the time 
interval A t  = d&, one then obtains 

Thus, since it is known that c ( t )  varies as t -d14,  any information concerning cAB 
gives information on d,, and vice versa. In one dimension, it is obvious that cAB 
varies as t-’!’, since one has exactly two AB pairs in each domain. ?b obtain a similar 
result in higher dimensions requires two sets of assumptions. Firstly, one needs to 
know how the interface of the domains scale with time. This can be obtained if 
one assumes compact domains with smooth boundaries. This leads to the length of 
the interface growing as f(d-i)’2.  Secondly, one needs to know how the interface 
particles are distributed along it. In particular, this requires knowing the average 
distance between interface particles. X v O  possibilities suggest themselves: either the 
particles, being of the same species, are separated by a distance d,, growing as t ’ f 4 ,  
or else, as they belong to the interface, they arc separated by a distance of order 
dAB, In two dimensions, the latter hypothesis leads to d,, growing as t1 I3 ,  which has 
been clearly confirmed numerically. The corresponding behaviour of cAB, decaying 
as t - 5 / 6  has also been confirmed. 

In three dimensions, an additional difficulty occurs equation (3.1) is no longer 
correct, since it is no longer true that nearest-neighbour particles of different species 
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are overwhelmingly likely to react in a time of the order of their distance squared. 
While it is not quite clear how to take this into account, the following modification 
of equation (3.1) might be appropiate for d greater than two 

since the probability of encounter of two particles starting at a distance R decays 
as R-(d-2) .  This, together with the two hypotheses mentioned above (compact 
domains with smooth boundaries and interface particles separated by a distance of 
d,, irrespective of species) leads to the final result 

d,, a t’ I4 (3.3) 

so that the entire effect should disappear and d,, is expected to scale as d,,. At 
this stage, however, it is absolutely imperative to check that this is indeed true, as 
the hypotheses I have been making are too numerous for comfort. Furthermore 
the hypothesis of domains with smooth boundaries has been questioned precisely in 
the case of interest to us, namely three dimensions. In fact, due to the ability of 
walkers to bypass one another in three dimensions, one would expect a rather diffuse 
interface. 

In the above arguments, I have been using the term ‘nearest neighbour’ in a rather 
vague fashion. In one dimension, the neighbours of a particle are uniquely defined, 
but in any higher dimensions this ceases to be the case and an arbitrary definition 
must be resorted to. In the simulations to be presented below, I took the following 
definition: for every particle 1 looked at the ten nearest other particles. The number 
of AA nearest neighbours, for example, was then calculated to be the total number 
of such pairs encountered with both particles being k The quantities such as the 
number of AB pairs were symmetrized so that there should be no distinction between 
the number of AB pairs and that of BA pairs. This remark is necessary, because it 
is possible for one particle to be among the ten nearest neighbours of another, but 
not vice versa. A simple example of this is given by four particles on a line at the 
positions 1, 2, 4 and 8 respectively. It is clear that particle 2 is the nearest neighbour 
of particle 3, hut not vice versa: the nearest neighbour of particle 2 is particle 1. The 
number ten was chosen because it appeared to be sufficiently large to ensure that the 
nearest neighbours would be found in all directions, not only in the direction pointing 
inside the domain to which the particle belongs. As a clear example of the distortions 
brought about by having too small a number, consider what would happen in one 
dimension if one were only to look for the nearest neighbour and if all A particles 
were separated from their nearest neighbours by a distance of the order of t ’ I 4  (this 
is not in fact the case): it is immediately obvious that for long periods there would 
be virtually no AB nearest-neighbour pairs. Of course, this would eventually occur 
no matter how many nearest neighbours were taken, as long as it were not specified 
that both directions had to be considered. However, ten nearest neighbours would 
have been sufficient, in this hypothetical case, up to times of the order of lod,  so that 
this same definition should not cause undue concern in the case of three dimensions, 
where it is not practical to determine neighbours along specific directions. 

The results of the simulation are shown in figure 4, where d,, and d,, are plotted 
against time on a double-logarithmic scale. One sees that the distance between A 
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Figure 4. Logarithm ot the interparticle distances lor like species (points) as well 
as unlike species (cmsses) plotted against log 1. The two lines are quite convincingly 
parallel, hut their amplitude remains clearly dimerent. 
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Figure 5. Laganthm of the concentration OI nearest-neighbour pain of like species 
(points) and unlike species (crosses) plotted against log 1.  The full line shows slope -1. 
and is presumably parallel to the power-law lor the concentration of nearesl-neighbour 
pain ot unlike species. 

particles and the distance between A particles and B particles are very convincingly 
parallel on this doubly logarithmic plot, if one disregards the finite-size effects that 
take place for t > 1000. However, the exponent found is roughly equal to 0.26 f 
0.02, slightly higher than 0.25, though probably not significantly so. There is no 
doubt, on the other hand, that it is really less than one third (which is what one 
obsewes in the transient regime). Figure 5 shows the simulation results for the time 
bipefidiiiee of :he c~nce~::a:iox of xea:es:=nelghhnx p~irs. decreaes wick B 
power law of 0.97 + 0.02, in close agreement with the theoretical prediction of t - l .  

Thus one is led to the conclusion that the domains in three dimensions may well be 
compact objects with a reasonably smooth interface. As to the concentration of AA 
pairs, one expects to find it decaying as t-3/4, similarly to the concentration An 
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analysis of the data by successive slopes gives an exponent of 0.70 & 0.02, however. 
As things stand, this is a rather minor discrepancy, which I believe may be attributed 
to insufficient accuracy of the data. 

4. Conclusions 

Summarizing, I have defined a variation upon the usual model of AB annihilation. 
This model has the advantage of reaching the (known) asymptotic behaviour for the 
decay of the concentration in numerically accesible times. Apart from the academic 
interest of verifying the result of Bramson and Lebowitz numerically, this also enables 
one to verify conjectures about threedimensional behaviour of AB annihilation. 

In particular, I have investigated the behaviour of the interparticle distances. This 

distances scale differently from the AA interparticle distances. A scaling argument in 
the spirit of those given previously was attempted, and indicated that this difference in 
scaling should disappear in three dimensions. However, as this argument is based on 
a rather large number of questionable assumptions, it is obviously desirable to verify 
it numerically. Such a verification is possible in the above model, as the asymptotic 
regime can be reached. This is confirmed by the fact that the AA and AB interparticle 
distances scale (approximately) as @I4, whereas they scale as t 1 I 3  during the transient 
regime when the concentration behaves approximately as rl. 

The conclusion of the scaling argument, namely that the difference in the scaling 
behaviour of d,, and d,, disappears in three dimensions, is confirmed by the 
numerical simulation. This is therefore an indication that the assumptions made in 
the scaling argument are indeed valid. The most questionable of these is certainly 
the one assuming that the interface can be described by a reasonably sharp surface. 
It would he interesting to pursue these questions further, using the above model to 
attain the asymptotic regime. 

was motivated by the findhg !7j !ha_!$ i!! nee and two dimensions, the AE interpartic!e 
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